
Proceedings of the 15th European Simulation Multiconference (ESM2001).
June 2001. Prague [SCS]. ISBN 1-56555-225-3

EXPERIMENTING WITH DISTRIBUTED
MODELING AND SIMULATION USING THE INTERNET.

Jaap A. Ottjes, Hans P.M. Veeke, Arnoud A. Buizer
Sub Faculty of Mechanical Engineering and Marine Technology, Fac. OCP

Delft University of Technology
Mekelweg 2, 2628 CD Delft, the Netherlands

e-mail: J.A.Ottjes@wbmt.tudelft.nl , H.P.M.Veeke@wbmt.tudelft.nl

KEYWORDS
Discrete simulation, process-oriented simulation, model testing,
transportation.

ABSTRACT

Traditionally, most applied discrete simulation models are still
stand-alone models running on a single computer and using a
single sequencing mechanism. In this paper we focus on
distributed modeling and the consequences of its use on the
time sequencing and interactions between distributed models.
As an example a stand-alone model and two different
distributed models of a simple shipping system are designed.
The important steps and some remaining questions are
discussed. This modeling effort was part of the development
and verification of the simulation package TOMAS, which
fully supports distributed modeling and simulation. The
process-oriented modeling approach provided the basis for this.
The TOMAS package has been made available on the Internet.

INTRODUCTION

Many real systems are distributed in nature. Important reasons
for distributed modeling include the possibilities it provides to
apply distributed control, to create aggregated levels and
appropriate zooming functionality and the opportunity for the
distributed development and execution of models.
In this paper some simple models that are being used to
develop and test the concepts and the implementation of a
distributed modeling and simulation tool TOMAS are
described. This development is a follow-up of the simulation
software which we have been using many years in both
educational and professional practice for the modeling and
simulation of the large industrial systems found in the
production and transportation industries (Veeke 1982, Duinkerken et
al. 1999, Duinkerken and Ottjes, 2000). The modeling has always
followed the process- interaction simulation strategy (Zeigler et
al. 2000) that was first used in the program language "Simula",
which was already object oriented (Birtwistle and Dahl, 1973). This
process oriented approach is still being applied in simulation

tools (Crain, 1996) and new software, supporting process
modeling, is being launched (Healy, 1997).

Important demands that we impose on our simulation software
are: the language should support process-oriented modeling
and should be object-oriented, it must be lean, fast, flexible,
portable, easy to learn and low cost. It should allow the
creation and maintenance of re-usable objects. Delphi was
chosen as the basic developing language since it fulfils a
number of the above mentioned demands (Veeke, Ottjes 1999).
The main effort has been focussed on developing a fast event
driven sequencing mechanism to support both process
modeling and distributed modeling. After the completion of a
object- based process-oriented tool for stand-alone modeling
(Veeke, Ottjes, 2000), distributed functionality was added. An
important reason for that was to be able to reuse control
modules designed and tested with simulation for the control of
real objects such as automated guided vehicles, (Ottjes ,
Hogedoorn, 1996). Using existing solutions for distributed
modeling, especially HLA (Fujimoto, 2000, Rabe, 2000) would have
been the most obvious way. Apart from the advantages, using
HLA would however take a lot of extra effort next to the usual
simulation efforts (Klein, Strassburger, 1998). Considering that we
only need a small subset of all HLA possibilities, it was
decided that a basic distributed concept should be obtained by
simply using standard Windows facilities in combination with
the TCP/IP protocol, allowing communication over the
Internet. The concept is further elaborated in (Veeke, Ottjes,
2001).

First we consider some aspects of process-oriented modeling
and define pseudo language for important simulation
commands. Then a simple shipping model is used to illustrate
distributed modeling and some of the implications and new
possibilities it provides.

The models presented here are implemented in the simulation
package TOMAS (Tool for Object-oriented Modeling And
Simulation), based on Delphi or C++ (Veeke, Ottjes, 1999). The
package, including most of the source codes, is freely available
on www.tomasweb.com.

Proceedings of the 15th European Simulation Multiconference (ESM2001).
June 2001. Prague [SCS]. ISBN 1-56555-225-3

PROCESS ORIENTED MODELING.

In practice, there are two approaches that are designated as
‘process-interacting modeling’ (Zeigler et al. 2000). One approach
can be characterized as focussing on the elements which are
flowing through the system (Robert and Dessouky, 1998). For each
type of flow element the path through the system is described,
including the claiming of resources such as machines. The
second approach, following the Simula concept and used in this
work, focuses on the processes of the resources. Provided that
the real system has been analyzed thoroughly and that the goals
of the simulation project have been agreed, there are two steps
in the design of the model:

Step 1: decompose the system into relevant classes of elements,
preferably patterned on the real-world elements of the system.
A class is characterized by its attributes. The state of each
instance of a class is defined by the state or value of its
attributes. Methods ascribed to a class are also considered to be
attributes. An instance of a class will be called an element.
Step 2: distinguish the “living” element-classes and provide
their process descriptions. A process description governs the
dynamic behavior of each instance of the element class.

A process defines the dynamic behavior of an element. Two
types of process-activities are distinguished: Activities which
consume no simulation time, for example the determination of
the fastest route for a ship, and activities consuming simulation
time, for example the actual sailing of the route by the ship. For
the description of a model in the design stage we use pseudo-
language. We consider this informal modeling stage as an
essential feature of a simulation project. A model in pseudo-
language can be produced more quickly and is accessible to a
broader audience, especially the “problem owners”. Because in
most cases model validation appears to be difficult, the design
of an informal model in collaboration with the problem-owner
provides a possible opportunity for structural validation. The
translation from informal model into formal code should be
straightforward, with a minimal chance of errors in
interpretation putting some very specific demands on the
simulation software used.

We use a pseudo-code that is as close as possible to the formal
implementation in program code. In the process description we
use “advance t” to indicate that an element needs t time units
to carry out an activity. If such an ‘advance-statement’ is
encountered in the process description, the processing of the
particular element halts until time t has elapsed and then
continues. In other words the process is waiting for a specific
time event. The continuation of a process has to be
automatically controlled by the sequencing mechanism.
Analogous to that, it is possible for a process to wait for a ‘state
event’ e.g. for a specific condition to be fulfilled. In pseudo-
code this is written as: "advance while/until condition". At the
moment that the while condition becomes false or the until
condition becomes true, the process is automatically resumed.

If “advance” is encountered without any additional parameter,
the element becomes passive and can only leave this state and
proceed with its process with the help of another element which
reactivates it. Reactivation of an element is indicated by
"resume element". A process is activated for the first time by
"start". The "advance" clause may have aliases that fit into
the model context, such as wait, work, hold and standby. We
restrict ourselves to "advance". A process which is in an
advance state may be interrupted with the "cancel" command
originating from another process. The cancelled process may
be continued with the "resume" command. “tNow” is used to
indicate the current time in the simulated system.

The sequencing mechanism, necessary to synchronize the
activities and to manage the event calendar, must be supplied
by the simulation package used.

Additional features are "queues" or "sets", which may contain
elements and, in the case of stochastic behavior,
"distributions". Queues, sets, and distributions and also user
defined methods may be used as attributes of element classes.
It is good practice to express the function of an attribute by its
name. If relevant, the working of a method may be explained
separately. A self repeating process starts with "loop". If an
element has finished its process this is indicated with "finish".
For qualifying of attributes the “dot” notation is used. Example:
myPort.shipQ.first means the first element in the shipQ of
myPort.

Next we will describe some models of a system consisting of
an arbitrary number of ports and ships. The ships are sailing
between the ports and are handled by quay cranes. First a
model will be elaborated as a stand-alone model and after that
two distributed models will be defined. These models were
originally designed to test and evaluate our distributed
modeling software.

A STAND-ALONE MODEL OF A SYSTEM OF PORTS

port 1 oceanport 2

QC of
port 1 QC of

port 2

ship 1 ship 2

Figure 1. Stand-alone model with two ports each with one
crane, two ships and an ocean in stand-alone model

The model contains a number of ports that are instances of the
class ‘Port’ and one instance of the class ‘Ocean’. Each port

Proceedings of the 15th European Simulation Multiconference (ESM2001).
June 2001. Prague [SCS]. ISBN 1-56555-225-3

generates one or more instances of the class ‘ship’ which are
going to sail according the 'free trade' principle. The ships are
generated when the port is created. If a ship arrives in a port it
is moored and then waits to be handled. After that it leaves the
port and its next destination is randomly chosen from all other
connected ports. Figure 1 shows the elements and their
relationships in a model with two ports and two ships. Only the
classes ‘ship’ and ‘quayCrane’ (QC) own a process. The
classes, their attributes and the processes are listed in pseudo-
code in Figure 2. Elements with attributes referring to another
element 'know' the class of this element and can refer to any
instance of it.

Stand alone SHIPPING MODEL
Classes, attributes, processes

Class ‘Port’
� ShipQ: queue with ships
� MyOcean
� CraneQ
� GetMooringTime: function

Class ‘Ocean’
� ShipsSailingQ
� PortList

Class ‘QuayCrane’
� ShipInHand: refers to ship
� MyPort: refers to port
� GetHandlingtime: function
PROCESS
Loop
1. Advance while myPort. shipQ is empty
2. ShipInHand = myPort. shipQ.first
3. Remove shipInHand from myPort. shipQ
4. Advance getHandlingtime
5. ShipInHand.resume

Class ‘Ship’
� Destination: refers to port
� MooringTime
� GetNextPort: function
� GetSailingTime: function
PROCESS
Loop:
1. MooringTime = destination.getMooringTime
2. Advance mooringTime
3. Enter destination.shipQ
4. Advance
5. Enter ocean.shipsSailingQ
6. Destination = getNextPort
7. Advance getSailingTime
8. Leave ocean.shipsSailingQ

Figure 2. The stand-alone shipping model in pseudo code.

Time sequencing

In the stand-alone model one time sequencing mechanism is
operating. Every “advance” statement automatically results in
the generation of an event that is automatically processed by
the sequencing mechanism.

Initializing and running the model

A minimal initial configuration consisting of only one port and
the ocean are sufficient to run the model. More ports may be
initialized at the start of the simulation run or during its
execution, for example via the model user interface. All
participating ports are contained in the portList of the ‘ocean’.

DISTRIBUTED MODEL 1: PORTS AND OCEAN

Now we are going to elaborate the consequences of splitting
the stand-alone model into several parts called "member
models". We want each port to operate in an autonomous ‘Port’
model. The ‘Ocean’ model is to be a separate model containing
ships while sailing. In the HLA terminology ‘port’ and ‘ocean’
would be called ‘federates’ and together they form a
‘federation’ (Fujimoto 2000). Furthermore it should be possible to
generate and terminate any port at any time, provided that at
least one port stays connected. If a port is ‘terminated’ then its
ship should remain in the system.

We distinguish between two types of models which may be
member models of the distributed model: the ‘Port’ model,
containing a port, one or more cranes and ships in port and the
‘Ocean’ model containing ships that are sailing. Port models
and the Ocean model form the "distributed model". Any Port
model and the ‘Ocean’ may run on any ‘Windows computer’,
provided that it is connected to the Internet.

Process synchronization

Every model has its own local event based sequencing
mechanism like that used in the stand-alone model. In order to
ensure repeatability no “look ahead” features are used (Fujimoto
1997). A time-server model is introduced to synchronize the
simulation time of all connected models. It will be referred to
as the 'server'. The server operates on an arbitrary computer
with an Internet connection, controls the global model time and
passes information to and from member models. The server
time management is conservative. In fact it acts in a way
identical to that of the stand-alone model synchronization,
maintaining a global event list. From the moment a member
model connects to the server it subjects itself to the server and
sends its first local time stamped event to the server. All local
sequencing mechanisms remain active but subordinate to the
server. The server ‘knows’ the first event of each of the
member models and uses this information to manage the global
simulation time, taking into account the order of simultaneous
events. The server permits models to proceed and notifies all
models in the case of changes in global time.

Figure 3 shows the set of distributed models schematically. All
models may exchange messages with the server model.

Proceedings of the 15th European Simulation Multiconference (ESM2001).
June 2001. Prague [SCS]. ISBN 1-56555-225-3

port
model 1

ocean
model

port
model n

port
model 2

time server

Figure 3. Distributed model 1. The exchange of messages is
indicated with double arrows.

In Figures 4a and 4b the member models are shown in pseudo
code.

MODEL: PORTMODEL
ReceiveShip: procedure
1. create instance of class ship
2. start this instance

Class: Port
� craneQ
� shipQ: queue with ships
� getMooringTime: function

Class: quayCrane
� shipInHand: refers to ship in port
� myPort
� getHandlingtime: function
PROCESS
Loop
1. advance while myPort. shipQ is empty
2. shipInHand = myPort. shipQ.first
3. remove shipInHand from myPort. shipQ
4. advance getHandlingtime
5. shipInHand.resume

Class: Ship (in port)
� thisPort
� mooringTime
� transferToModel(mName): procedure
1. Send message with relevant information to model
with name "mName"
PROCESS
1. mooringTime = thisPort.getMooringTime
2. advance mooringTime
3. enter destination.shipQ
4. advance
5. transferToModel(oceanModel)
6. finish

Figure 4a. The “portModel” as a member of the distributed
model 1 in pseudo code.

Model interactions

In order to manage a set of synchronized simulation models,
interaction between models and server and mutual model
interaction is needed. In the current implementation of TOMAS
this is obtained by exchanging messages between models and
server using the TCP/IP protocol and standard Windows
Messaging facilities.

Model: OCEANMODEL

� receiveShip: procedure

Class: Ocean
� shipsSailingQ

Class: Ship (at ‘Ocean’)
� portList: name list of Portmodels
� destination: Portmodel name
� updatePortlist:procedure
� getNextPort: function
� getSailingTime: function
� transferToModel(mName): procedure
PROCESS
1. enter ocean. shipsSailingQ
2. updatePortlist
3. destination = getNextPort
4. advance getSailingTime(destination)
5. transferToModel(destination)
6. leave ocean.shipsSailingQ
7. finish

Figure 4b. The “oceanModel” as a member of the distributed
model 1 in pseudo code.

Messages may be exchanged synchronously if the models use
the same time-base or asynchronously if time synchronization
is not relevant. The sending model has to code its information
into a message and the receiving model has to decode it and
interpret the message, so a proper communication set must be
defined. Example: The transferToModel method of the ship in
figures 4a and 4b sends a message containing the model name
of the destination and the coded specific information needed,
for example cargo information. This will be further illustrated
in tables 1 and 2. We distinguish two types of interaction:

� autonomous interactions
� user defined interactions

Autonomous interactions

Autonomous interactions take care of the right sequencing of
events in the participating models and consist of messages
exchanged between the server and the models. For example an
"advance" clause causes a message containing the model name
and event time to be sent from the model to the server. When
that event time is reached the server sends a message back to
the model, allowing it to resume. Autonomous interactions are
generated and interpreted automatically without interference by
the user (modeler).

User designed interactions

User-designed interactions concern all model- specific
interactions. These may vary from asking the server for a list of
participating models to passing elements with attributes
between models. In this model a ship is distributed over two
models. Both the port model and the ocean model contain
ships. In our implementation elements, which are virtually
transferred to another model, pass the relevant information to
that model. In the example a ship, which has to transfer from a

Proceedings of the 15th European Simulation Multiconference (ESM2001).
June 2001. Prague [SCS]. ISBN 1-56555-225-3

port to the ocean, sends its ID (name) and its cargo data, coded
in a message, to the ocean model. In the ocean model this
message is decoded and interpreted, resulting in the creation or
re-creation and activation of the ship with aditional attributes to
manage sailing. A ship that transfers from the ocean to a port
passes on its cargo and its name. In the port model the ship is
re-created with the addition of an attribute ‘mooringTime’,
which is calculated according specific port data and the cargo.
Both models need the proper element definition in order to be
able to reconstruct the ship. The ship process is also distributed
over the two models, so both element definitions contain part
of the ship-process. The element definitions have to be agreed
on by the modelers and provided in the right model.

Initialization and running

As in the stand alone model, the distributed model may work if
at least one port model and the ocean model and, of course, the
server are running. Other port models can be started from any
location from any computer connected to the Internet. If a port
model, "gets rid of" the ships in its shipQ before disconnecting
from the server, these ships will remain in the system.

However, this is not a very logical way to model. The ship,
with its attributes and methods, has to transfer from one model
to another. In fact these attributes and methods, including the
process, may differ in different models. It makes more sense
and it is more appropriate to the process-oriented approach to
keep the ship in its own model. Only the relevant data elements
have to be transferred between member models then. This is
done in the second distributed model.

DISTRIBUTED MODEL 2: PORTS AND SHIPS

port
model 1

port
model n

port
model 2

time server

ship model 1 ship model 2 ship model m

Figure 5. Distributed model with ports and cranes in port
models and ships in ship models . The double arrows represent
the exchange of messages between server and model.

In this model only distributed models of ports and ships appear.
The Ocean as a "container" for sailing ships has been left out.
Ports as well as ships have to connect to the server model after
they have been created. Every time a ship reaches a port it asks
this port, via the server, for its mooring time and advances that
time. After mooring, the ship sends its ID and cargo data to the
port model (notifyPortModel). After receiving this information,

the port model creates a job for its crane. The job contains the
ship ID and the cargo as attributes. Later the ship ID is used to
direct a remote resume message to the ship after the job is done
and the ship has to depart.

Model: PORT MODEL
� receiveJob: procedure
1. create Job and set attributes ship and cargo
2. put job in port.jobQ

Class: Port
� craneQ
� jobQ: queue with jobs

Class: Job
� ship refers to shipModel
� cargo

Class: QuayCrane
� jobInHand refers to job
� myPort
� getHandlingtime: function
� notifyshipModel(mName): procedure
PROCESS
Loop
1. advance while myPort. jobQ is empty
2. jobInHand = myPort.jobQ.first
3. remove jobInHand from myPort.jobQ
4. advance getHandlingtime
5. notifyShipModel(jobInHand.ship)

Figure 6a. The “portModel” as a member of the distributed
model 2 in pseudo code.

Model: SHIP MODEL
� resumeProcess: procedure

Class: Ship
� portList list =name list of current ports
� destination refers to port
� mooringTime
� getMooringTime: procedure
� updatePortlist: procedure
� getNextPort: function
� getSailingTime: function
� notifyPortModel: procedure
PROCESS
Loop
1. updatePortlist(timeServer)
2. destination = getNextPort
3. advance getSailingTime
4. mooringTime= getMooringTime(destination)
5. advance mooringTime
6. notifyPortModel(destination)
7. advance

Figure 6b. The “shipModel” as a member of the distributed
model 2 in pseudo code.

Again it should be possible for models (port and ship) to
connect to and to disconnect from the server at any time from
any location. Figure 5 shows the model structure. In Figures 6a
and 6b the port and ship class definitions and processes are
shown in pseudo code.

Proceedings of the 15th European Simulation Multiconference (ESM2001).
June 2001. Prague [SCS]. ISBN 1-56555-225-3

Model interactions

In this example there are several user-defined messages and
interpretations. Every time a ship has to decide about its next
port, it has to know which ports are still connected. In the
stand-alone model a ship only has to look into the portList of
the ocean. In the distributed case only the server knows all
current models, so a ship asks the server for a list of models
called ‘clients’ in the server (updatePortList) see also Table 1.
To this end, standard communication is provided via the
'sendMessageToServer' routine. If a ship has moored it passed
its relevant information, coded in a message, to the port:
notifyPortmodel, passing its ID and cargo information. The
Port model receives that message and calls its receiveJob
procedure to create a job with proper attributes.

Initializing and running

The distributed model 2 works if the server runs and one
Portmodel and one shipmodel are connected. Additional ship
models and port models may connect from any computer and
may disconnect at any time.

Practical implementation

To connect to the server a member model only needs to know
the IP address of the computer on which the server is running.
In TOMAS this IP address has a default value (local host; all
models run on the same computer) and may be changed via the
user- interface or read from a configuration file.

TESTS

The models described are implemented in TOMAS. It appears
that the architecture as described is working properly on single
computers (server address = local host), on local networks and
via the Internet operating from several service providers.

In Figure 7 the sever log of an experiment with distributed
model 1 is shown serving some port models that are running.
Table 1 shows part of the trace output of the Ocean model and
table 2 shows part of the trace of one of the member models
(Rotterdam) during a run with distributed model 1. In table 1
Ship_ANTWERP is at the Ocean and is going to choose the
next Port. Lines 7-12 show the list of connected models, the
server has send to this OceanModel after a request of
Ship_ANTWERP. The message is preceded by $$clients,
followed by the total number of connected clients (member
models), in this case 5, the OceanModel included. The
Ship_ANTWERP chooses ROTTERDAM (line 16) and
finishes its process in the OceanModel at time 47.80. At that
time the Ship-ANTWERP is re-created in PortModel
Rotterdam. In table 2 lines 14-16 show the coded message that
was send by Ship_ANTWERP from the OceanModel. The
$$from clause is followed by the model name of the sender,

then the specific message that contains the ship name, its cargo
"hallo from ANTWERP” and the time the ship is supposed to
be re-created in the receiving model.

Table 1. Part of Trace OceanModel

Line Nr Trace text
1. …….
2. Ship_ROTTERDAM transfers to ROTTERDAM
3. 47.00 Ship_ROTTERDAM finished
4. 47.80 Ship_ANTWERP is current now
5. Ship_ANTWERP asks Server for update portList
6. INCOMING Message in OCEAN
7. $$clients:5
8. !!HAMBURG!!5!!5-2-2001 10:39:01
9. !!ANTWERP!!4!!5-2-2001 10:37:15
10. !!BRUGGE!!3!!5-2-2001 10:35:01
11. !!ROTTERDAM!!2!!5-2-2001 10:34:11
12. !!OCEAN!!1!!5-2-2001 10:33:54
13. 47.80 Ship_ANTWERP is current now
14. 47.80 Ship_ANTWERP out of Sailing ShipsQ
15. Ship_ANTWERP proceeds after respons clients
16. Ship_ANTWERP transfers to ROTTERDAM
17. 47.80 Ship_ANTWERP finished
18. INCOMING Message in OCEAN
19. $$from:HAMBURG
20. !!Ship_HAMBURG!!hallo from HAMBURG!!47.80
21. 47.80 Ship_HAMBURG created
22. 47.80 Ship_HAMBURG is current now
23. 47.80 Ship_HAMBURG to tail of Sailing ShipsQ
24. Ship_HAMBURG Now at Ocean model
25. 47.80 Ship_HAMBURG holds until 49.00
26. 48.00 Ship_BRUGGE is current now
27. Ship_BRUGGE asks Server for update portList
28. …

Table 2. Part of Trace PortModel ROTTERDAM

Line Nr Trace text
1. …..
2. INCOMING Message in ROTTERDAM
3. $$from:OCEAN
4. !!Ship_ROTTERDAM!!hallo from ROTTERDAM!!47.00
5. 47.00 Ship_ROTTERDAM created
6. 47.00 Ship_ROTTERDAM is current now
7. 47.00 Ship_ROTTERDAM to tail of ShipsToHandleQ
8. Ship_ROTTERDAM wait for handling by Port
9. 47.00 Ship_ROTTERDAM suspends
10. 47.00 QC is current now
11. QC:Ship_ROTTERDAM start handling
12. 47.00 Ship_ROTTERDAM out of ShipsToHandleQ
13. 47.00 QC holds until 48.00
14. INCOMING Message in ROTTERDAM
15. $$from:OCEAN
16. !!Ship_ANTWERP!!hallo from ANTWERP!!47.80
17. 47.80 Ship_ANTWERP created
18. 47.80 Ship_ANTWERP is current now
19. 47.80 Ship_ANTWERP to tail of ShipsToHandleQ
20. Ship_ANTWERP wait for handling by Port
21. 47.80 Ship_ANTWERP suspends
22. ……

$$clients and $$from are key-words recognized and interpreted
by the server: $$clients being a request for a list of models

Proceedings of the 15th European Simulation Multiconference (ESM2001).
June 2001. Prague [SCS]. ISBN 1-56555-225-3

connected and $$from being a message send by one model to
another model

Figure 7. Server log from a run with distributed model 1 with 4
PortModels and the OceanModel.

RESULTS, CURRENT AND FUTURE WORK

Three examples of models that have been used for testing
and verification of the distributed simulation package TOMAS
are discussed on the level of pseudo language. In TOMAS,
time synchronization of models is obtained with the help of a
time server using TCP/IP protocol and Windows sockets. The
distributed model may run on computers connected to the
Internet. It is important to state that, though the set of models is
distributed, only one model is running at a time. Parallel
computing does not apply. TOMAS is fully operational and
available free on the Internet.

The process-oriented modeling approach provides a natural
way for the design of distributed models. In pseudo language
there is hardly any difference between a stand-alone model and
its distributed variants. Distributed modeling facilitates parallel
modeling at distributed locations. A proper communication set
must be established between member models and between
member models and the time server.

Other current work relates to the server being used to
develop distributed control of simulated objects. The control
system then runs on one or more sub-models on one or more
computers connected to the server and controlling distributed
simulation models. The advantage of this is that local control
functions may be developed and tested dynamically. Moreover
the testing can be expanded by substituting the real elements
for the simulated elements in this way leading to reuse of
software.

Some topics which will be elaborated in future are the
further development of pseudo language to design models and
the streamlining of the messaging between member models.
Further work relates to aggregated modeling with zooming

possibilities, and real time simulation with substitution of
simulated elements by real world elements.

REFERENCES

Birtwistle, G. M., O. J. Dahl, B. Myhrhang, K. Mygrard (1973), Simula
Begin, Van Nostrand Reinhold, New York.

Crain, Robert C. Simulation using GPSS/H. Proceedings of the 1996
Winter Simulation Conference ed. J.M. Charnes. pp 453-459.

Duinkerken, Mark B. and Jaap A. Ottjes, 2000. A simulation model for
automated container terminals. In proceedings of Advanced Simulation
Technology Conference (ASTC2000) April 16-20, 2000, Washington, D.C. pp.
The Society for Computer Simulation International (SCS), ISBN: 1-56555-
199-0.

Duinkerken, M.B.,; Evers, J.J.M., Ottjes, J.A. 1999. TRACES: Traffic
Control Engineering System. Proceedings 31st Summer Computer Simulation
Conference. Chicago [SCS] 1999, pp. 461-465.kl

Fujimoto R.M. 1997. Zero Lookahead and Repeatability in the High Level
Architecture. 1997 Spring Simulation Interoperability Workshop.

Fujimoto R.M. 2000. Parallel and Distributed Simulation Systems. Wiley
Series on Parallel and Distrinuted Computing. Wiley, New York.

Healy, J. R.A. Kilgore 1997. "Silk,: A Java-Based Process Simulation
Language". Proceedings of the 1997 Winter Simulation Conference, IEEE,

Klein, U., Strassburger, S., Beikirch, J. Distributed Simulation with
JavaGPSS based on the High Level Architecture. International Conference on
Web-based Modeling and Simulation, Jan. 11.-14. 1998, San Diego.

Ottjes, J.A., F.P.A. Hogedoorn; "Design and control of multi-AGV
systems: reuse of simulation software." Proceedings of 8th European
simulation symposium.
Society for Computer Simulation Internationa Genoa 1996, p. 461-465. ISBN:
1-56555-099-4

Ottjes, J.A., Duinkerken, M.B., Evers, J.M., Dekker, R. “Robotised inter
terminal transport of containers” , Proc. 8th European Simulation Symposium
1996 Genua [SCS] pp. 621-625,
ISBN 1-56555-099-4 Vol I

Rabe M. 2000. Mission:Modelling and Simulation Environments for
Design. Planning and Operation of Globally Distributed Enterprises,
Fraunhofer Institute for Production, Systems and Design Technology (IPK),
Berlin; Esprit Project No. 29656.

Robert, C.A., Dessouky, M., 1998. “An Overview of Object-Oriented
Simulation”. Simulation vol:70:6, pp. 359-368. 1998.

Veeke, H.P.M. 1982. "Process simulation as a management Tool,
Proceedings of the IASTED International Symposium Applied Modeling and
Simulation, Paris, 1982.

Veeke, H.P.M. and Ottjes, J.A. 1999. “Problem oriented modeling and
simulation”, Proc. 1999 Summer computer Simulation Conference (SCS’99)
Chicago, Illinois pp.110-114, ISBN 1-56555-173-7

Veeke, Hans P.M., Jaap A. Ottjes, 2000. TOMAS: Tool for Object-oriented
Modeling And Simulation. In proceedings of Advanced Simulation Technology
Conference (ASTC2000). April 16-20, 2000, Washington, D.C. pp. 76-81. The
Society for Computer Simulation International (SCS), ISBN: 1-56555-199-0

Veeke, H.P.M., Ottjes. J.A., “2001, “Applied Distributed Discrete Process
Simulation ”, submitted to ESM 2001, Prague.

Zeigler B.P., Praehofer H and Kim T.G.. 2000. “Theory of Modeling and
Simulation 2nd Ed. Academic Press, San Diego

